

5th ForTra Workshop for Translational Research

Precision immunotherapy: Mutation-specific TCR-T-cell therapy for MyD88L265P mutated lymphoma – GMP-grade vector production and establishment of TCR-T cell manufacturing

Charité-Universitätsmedizin Berlin

Molecular Immunotherapy Research Group

PD Dr. med. Antonia Busse

Unmet Medical Need and Problems to be Solved

Diffuse Large B Cell Lymphoma (DLBCL) Annual incidence ~ 7 / 100 000

Median age at diagnosis 66y

40% of patients are primary refractory or relapse

3y-PFS after HD chemotherapy and ASCT: 21%

mOS in patients who do not qualify for ASCT: 3.3 months

Primary CNS Lymphoma

Annual incidence ~ 0.5 / 100 000

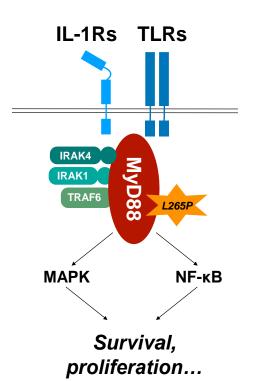
Median age at diagnosis: 67 years

Long-term remissions only reached with intensive HD-

chemotherapy \rightarrow high toxicity, mortality up to 12 %

mOS in patients > 65 years: 7-19 months

CD19 CAR T cells

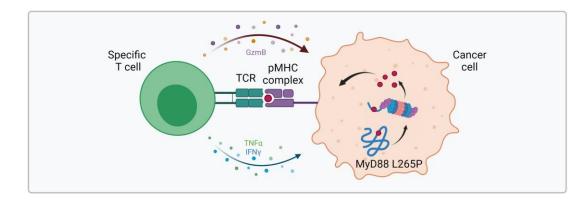

- ~ 50–60% of patients will not achieve a CR or will relapse after CAR T-cell therapy !
- pCNS have been excluded from CAR T-cell trials!
- NOT TUMOR SPECIFIC! "On-target" toxicity: B-cell aplasia, CD19 expression in mural brain cells
- Loss of surface expression (prevented by targeting multiple antigens?)

Precision immunotherapy: Targeting the tumor-specific driver mutation MYD88 L265P

TRUELY tumor-specific, not expressed in healthy tissue!

	Mutation frequency of MyD88
All lymphoid malignancies	20 %
DLBCL ABC-like	15% 30%
Primary central nervous system lymphoma	50%
Testicular DLBC	72%
Waldenstrom Macroglobulinemia	90%

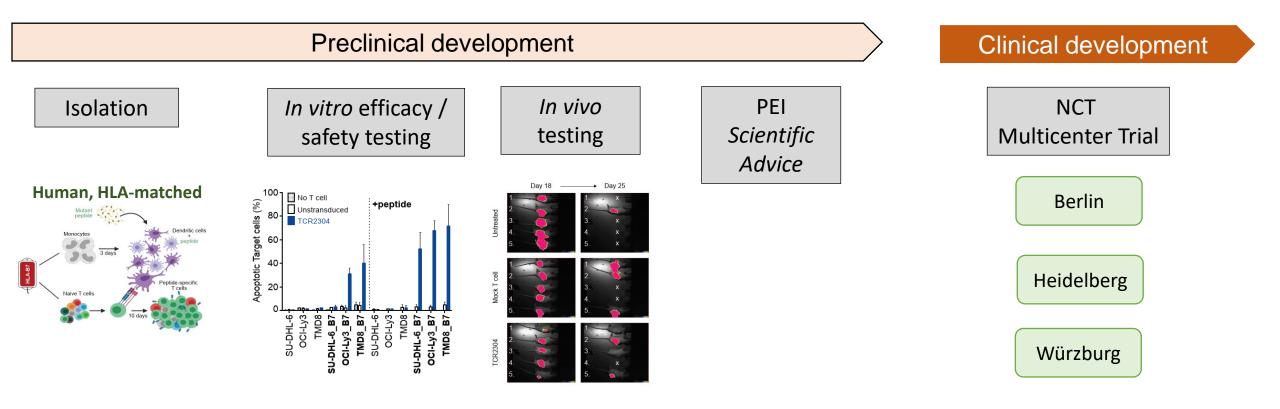
93% (2164/2330) of all mutant samples: p.L265P (c.794T>C)


Lee et al. 2017; Ngo et al. 2011; Rovira et al. 2016; Xu et al. 2013 Staiger et al. 2015; Drandi et al. 2018, Yizhak et al. 2019

Precision immunotherapy with a MyD88 L265P specific TCR for R/R lymphoma Advantages compared to CARs or TCRs targeting B-cell antigens

Peptide	HLA type	Sequence	Affinity
WT	HLA-B*07:02	RLIPIKYKAM	3035 nM
Mut 10 mer	HLA-B*07:02	RPIPIKYKAM	12 nM
11mer (Pre-1)	HLA-B*07:02	KRPIPIKYKAM	156nM
12mer (Pre-2)	HLA-B*07:02	QKRPIPIKYKAM	219nM

- No "on-target"-toxicity
- Less risk of antigen loss when targeting a driver mutation
- Not subjected to negative thymic selection
 - →isolation of high affinity TCR from the human repertoire without any affinitiy enhancement

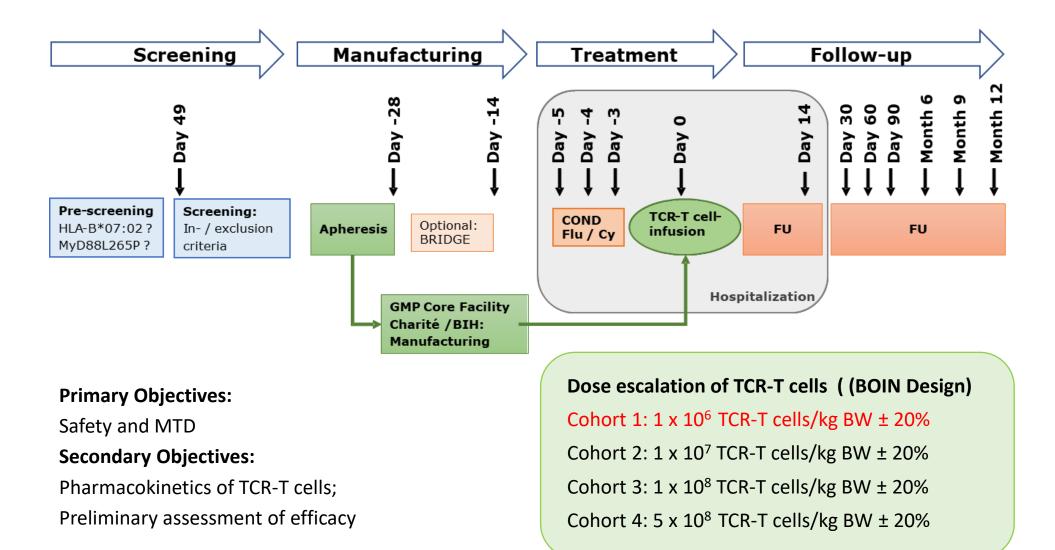

International PCT-application PCT/EP2020/051405, Cinar et al., JITC 2021

Precision immunotherapy with a MyD88 L265P-specific TCR for R/R lymphoma

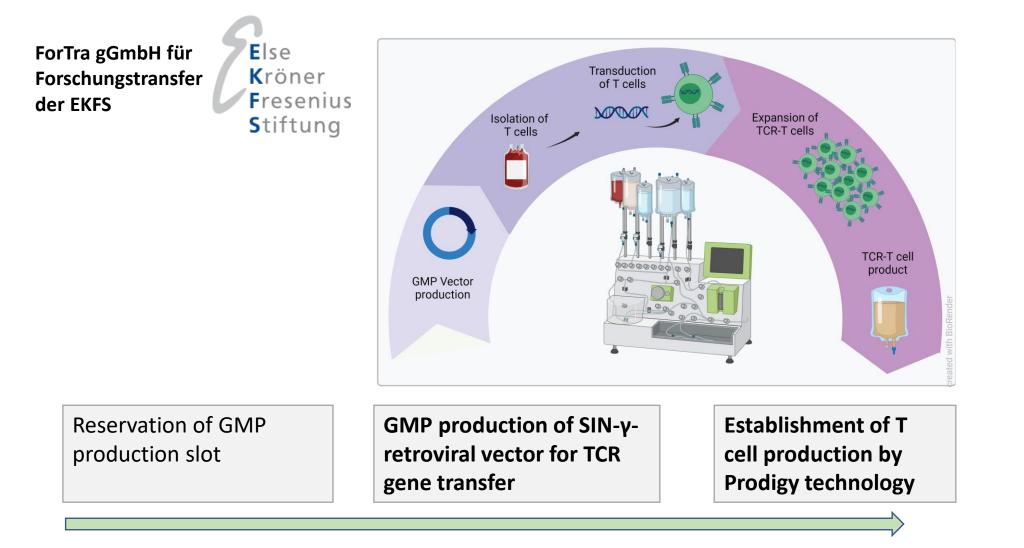
SPARK funding

BMBF funding

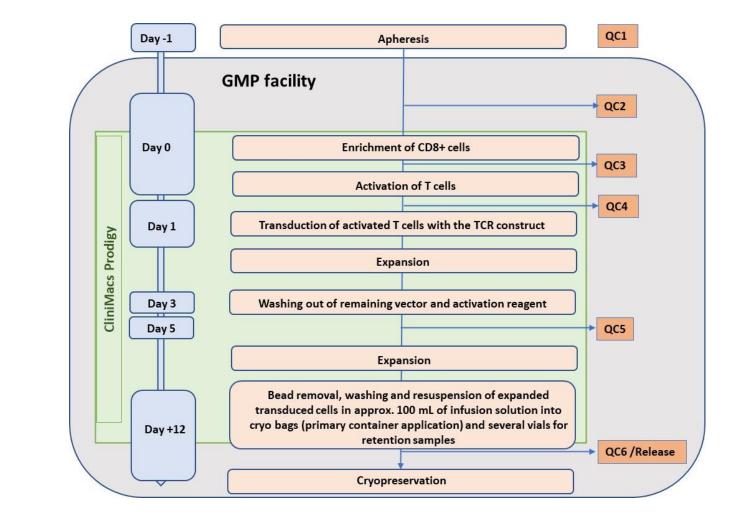
First-patient-in Q2/2024


International PCT-application PCT/EP2020/051405, Cinar et al., JITC 2021

First in human study in R/R MyD88L265P mutated, HLA-B*07:02+ B-cell lymphoma



GMP-grade vector production and establishment of TCR-T cell manufacturing


Comparability and safety studies

Establishment of TCR-T cell manufacturing

Manufacturing for clinical trial @Charité

Establishment in non-GMP environment @MDC

Thank You

Molecular Immunotherapy Research Group

Sarah Al-Tabatabaee Oezcan Cinar Nese Cakmak Falk Fabian Caecila Freund Corinna Grunert Gustav Heynen Ulrich Keller Ran Li Antonio Pezzutto Paula Schmidt Simone Rhein (EPO Berlin Buch GmbH)

BIH Innovation

Julia Hütter, Tanja Rosenmund and **SPARK team** Anette Schröder and team, **Technology Transfer**

Ascenion

Ansgar Santel, Elisabeth v. Weizäcker

SPARK

Cooperation Partners

Charité/ DKTK Björn Chapuy Sebastian Ochsenreither Gerald Willimsky

EPO Berlin Buch GmbH Bernadette Brzezicha, Simone Rhein ATMP Lab Lars Bullinger, Anette Künkele

Charité-CTO Roman Weimann, Mario Lorenz

NCT Trial Centers Carsten Müller-Tidow, Heidelberg Hermann Einsele, Würzburg

Biostatistic, BIH@Charité Frank Konietschke

ForTra gGmbH für Forschungstransfer der EKFS

G German Lymphoma Alliance

Thomas Blankenstein

MDC

Felix Lorenz

Clemens Schmitt

Patient Advocates Deutsche Leukämie- & Lymphomhilfe" Patient Advisory Board CCCC, Ulla Ohlms

Bundesministerium für Bildung und Forschung

Thank you ! Questions?

Charité-Universitätsmedizin Berlin

Molecular Immunotherapy Research Group

PD Dr. med. Antonia Busse